BMS: CAN BUS COMMUNICATION SPECIFICATION

1. <u>Communication Specification</u>

The principle for the data link layer.

Communication speed for bus line: 250Kbps.

The provision for data link layer: Refer to the related regulation of CAN2.0B and J1939. Use and redefine 29 identifiers of CAN extended frame. The distribution of 29 identifiers are listed below:

IDENTIFIER 11 BYTES						S R R	I D E		IDENTIFIER EXTENSION 18 BYTES																					
Р	RIOR	ITY	R	DP		PD	U FOI	RMAT	「(PF)		S R R	I D E	Ρ	۶F	PDU SPECIFIC(PS) SOURCE ADDRESS(SA)															
3	2	1	1	1	8	7	6	5	4	3			2	1	8	7	6	5	4	3	2	1	8	7	6	5	4	3	2	1
28	27	26	25	24	23	22	21	20	19	18			17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Priority has 3 bits so there can be 8 priorities. R is generally 0. DP is fixed at 0. 8-bit PF is the code for the message. 8-bit PS refers to the destination address. 8-bit SA refers to the source address.

There is a name and an address for every node which accesses the network. The name is used for node identification and address arbitration. The address is used for data communication to nodes.

>Every node has at least one function. Multiple nodes might have the same function or one node might have multiple functions.

CAN Network Address Distribution

Obtain the node address of CAN Bus from the definition of J1939 Standard:

Node Name	SOURCE ADDRESS(SA)
Battery Management System (BMS)	244(0xF4)
Charger Control System (CCS)	229(0xE0)
Broadcast Address (BCA)	80(0x50)

Message Format

Message1: (ID: 0x1806E0F4)

OUT	IN			ID		Cycle Time (ms)			
DMC	000	Р	R	DP	PF	1000			
BMS	CCS	6	0	0	6	1000			
			DATA		•	·			
Positio		Data Name							
n									
BYTE1	Max Allowa	able Charging Terminal	Voltage High						
BIILI		Byte(VOL_SET_H)		- 0.1V/byte offset:0 e.g. Vset=3201, its corresponding 320.1V					
BYTE2	Max Allowa	able Charging Terminal	Voltage Low						
DITEZ		Byte							
		(VOL_SET_L)							
BYTE3	Max Allov	wable Charging Current	: High Byte						
DITES		(CUR_SET_H)		- 0.1A/byte offset:0 e.g. lset=582, its corresponding 58.2A					
BYTE4	Max Allo	wable Charging Curren	t Low Byte						
DTIE4		(CUR_SET_L)							
BYTE5		Control		0: Start charging					
DTIED		Control		1: Stop charging					
BYTE6	BYTE6 Reserved								
BYTE7	BYTE7 Reserved								
BYTE8 Reserved									

Message 2: (ID: 0x18FF50E0)

OUT	IN		ID				
ccs	DCA	Р	R	DP	PF	1000	
003	BCA	6	0	0	0xF	1000	
					F		
DATA							

Positio n	Data Name			
BYTE1	Output DC Voltage High Byte	0.1\//byte	offect:0	e.g. Vout=3201, its corresponding 320.1V
BYTE2	Output DC Voltage Low Byte		Unset.U	e.g. voul=3201; its corresponding 320.1v
BYTE3	Output Current High Byte	0.1A/byte	offset:0	e.g. lout=582, its corresponding 58.2A

BYTE4	Output Current Low Byte	Max byte means mark. 0: charging; 1: discharging
BYTE5	Status Flags	
BYTE6	Input AC Voltage High Byte	0.1V/byte offset:0 e.g. Vac=2200, its corresponding 220.0V
BYTE7	Input AC Voltage Low Byte	
BYTE8	Reserved	

STATUS	Mark	Description
Bit 0	Hardware Failure	0: Normal. 1: Hardware Failure
Bit 1	Temperature of Charger	0: Normal. 1: Over temperature protection
Bit 2	Input Voltage	0: Input AC voltage is normal. 1. Input voltage is wrong, the charger will stop working.
Bit 3	Starting state	0: Charger detects battery voltage and starts charging.1: Charger stays turned off (to prevent reverse polarity).
Bit 4	Communication State	0: Communication is normal. 1: Communication receives a time-out.
Bit 5		
Bit 6		
Bit 7		

Operation Mode

1. BMS sends operating information (Message 1) to the charger at a fixed interval of 1s. After receiving the message, the charger will work under the Voltage and Current in Message. If the Message is not received within 5s, then it will enter into a communication error state and the output will be closed.

2. If either the Charge Current Limit (Max Allowable Charging Limit) is set to 0 amps OR the Control bit is 1, charging must stop immediately.

3. The charger sends broadcast messages (Message 2) at intervals of 1s. The display meter can show the status of the charger according to up-to-date information.

4. The CAN module comes with a mating connector with CAN-L and CAN-H pins that connect to your BMS. No other connections to the

BMS (such as ground or shield) are necessary or allowed. Pin 1 is CAN-L and pin 2 is CAN-H.